
Ultimate

Goran Mitrovic

Ultimate ii

COLLABORATORS

TITLE :

Ultimate

ACTION NAME DATE SIGNATURE

WRITTEN BY Goran Mitrovic February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Ultimate iii

Contents

1 Ultimate 1

1.1 Ultimate Patch System Manual . 1

1.2 Copyright information . 1

1.3 Introduction . 2

1.4 Requirements . 3

1.5 Starting Ultimate Patch System . 3

1.6 Using Ultimate Patch System . 4

1.7 Given Patchers... 5

1.8 DPatch . 5

1.9 Palette Patcher . 5

1.10 AllocMem Patcher . 5

1.11 Unfinished Patchers . 6

1.12 Problems . 6

1.13 Developer Informations . 6

1.14 ToDo list . 15

1.15 Distribution rules . 15

1.16 Ultimate Patch System’s history . 16

1.17 Credits And Stuff . 16

1.18 Contacting the author . 16

Ultimate 1 / 17

Chapter 1

Ultimate

1.1 Ultimate Patch System Manual

Ultimate Patch System 1.0
by Goran Mitrovic
released on 14 October 1995.

TABLE OF CONTENTS

Copyright

Introduction

Requirements

Starting Ultimate Patch System

Using Ultimate Patch System

Using Patchers

Problems

Developer Informations

ToDo

Distribution

Program History

Credits and Thanks

Contacting the Author

1.2 Copyright information

Ultimate 2 / 17

The Ultimate Patch System (the binary and documentation) is Copyright ©
1995 Goran Mitrovic. All Rights reserved.

Ultimate Patch System comes with NO WARRANTIES. The author is not
responsible for any loss or damage arising from the use of Ultimate Patch
System; the user takes all such responsibility.

1.3 Introduction

Library functions can be patched. On the old way, server part of program
have to copy patch in allocated memory, and few other things... When few
patches are installed on the same function call, it looks like this:

JUMP TABLE
|
+------------------> LAST PATCHER

|
+----------------+
|
+-----------> PREVIOUS PATCHER

|
+----------------+
|
+-----------> FIRST PATCHER

|
+-----------------------+
|
+------> ORIGINAL FUNCTION CALL

|
+-----------+
|

RTS

Now, if ’first patcher’ wants to be removed, it can’t be done because
after executing ’previous patcher’ he is called, so if he is hard
removed, system might crash! Here comes the Ultimate Patch System. It
allows very easy creation of patches. They could be one-file patchers,
or patchers made via messages from application to Ultimate Patch System.
There’s quite a lot of other possibilities(look ’developers’ section).
And, coder doesn’t have to worry about the removal of his patch - it is
always possible.

JUMP TABLE
|
+----> UPS STRUCTURE

+**+ |
| | +------> PATCHER WITH LOWEST PRIORITY

+-------+ | |
| +--------------+
|
+--> UPS STRUCTURE

+**+ |
| | +------> PATCHER WITH HIGHER PRIORITY

Ultimate 3 / 17

+-------+ | |
| +--------------+
|
+--> UPS STRUCTURE

+**+ |
| | +------> PATCHER WITH THE HIGHEST PRIORITY

+-------+ | |
| +--------------+

+-+
|
+------> ORIGINAL FUNCTION CALL

|
+-----------+
|

RTS

There. Now, when, for example, the ’higher patcher’ is removed, second
UPS’ structure is also removed, but pointers to it in the other two
structures are changed.

1.4 Requirements

There are two versions of Ultimate Patch System. For 68000 and for 68020
or higher processors. Version for 68000 is NOT tested, so it might not
work. Then, ROM and Workbench must theoretically be v36 or above.
Reqtools.library v38 or higher has to exist. Ram ussage is quite low.

Ultimate Patch System has been developed on: A1200, 2mb Ram, 250mb,
14400 modem, v39 OS, v40 Workbench. Soon, after starting this project,
Amiga has been expanded with aditional 4mb of Ram. And, at the end of
developing, Blizzard 1220 came into my Amiga.

Ultimate Patch System has been (aditionally) tested on:
A4030, 10mb Ram, 850mb, 14400 modem, v39 OS, v40 Workbench.
A4040, 14mb Ram, 1+gb, 14400 modem, v39 OS and Workbench.

1.5 Starting Ultimate Patch System

There are two ways to start Ultimate Patch System.

1. CLI

You can simply start it with executing UPS in CLI. There are few
parameters which you may want to use.

NOLOAD/S,POPUP/S,POPKEY/K/F

NOLOAD - patchers from s:PatcherList won’t be loaded.
POPUP - UPS’ GUI will popup.
POPKEY - after this keyword, put hotkey for GUI popup. Default is

rcommand p.

Ultimate 4 / 17

2. Workbench

Just double click on UPS’ icon. Like in CLI start, you can change few
parameters in tooltypes.

CX_POPKEY - after this, put hotkey for GUI popup. Default is rcommand p.
Remove brackets!

CX_POPUP - UPS’ GUI.
LOAD - patchers from s:PatcherList to load?

If UPS is started once, GUI will popup when hotkey or ShowInterface from
Exchange is pressed.

1.6 Using Ultimate Patch System

Using Ultimate Patch System is quite simple. In most cases, you’ll just
start it. :)

GUI will popup if hotkey is pressed(default is rcommand p), if
ShowInterface from Exchange is pressed, or if POPUP option on startup is
selected.

MAIN WINDOW

On the left side is listview in which is list of currently loaded
patchers. On the right side, listview contains list of patchlinks(things
what patch that patcher) of current patcher.
’Checkbox’ enables/disables patcher(patchlinks).
’Remove’ removes patcher.
’Prefs’ calls prefs routine of patcher(patchlink).
’Load’ loads new patcher(or few of them).
’Enable All’ enables all of patchlinks.
’Patchers Manager’ opens Patchers Manager window.
’Libraries Overview’ opens Libraries Overview window.
’About’ opens About requester.
’Quit’ quits Ultimate Patch System.
’Hide’ closes Ultimate Patch System’s windows.

PATCHERS MANAGER WINDOW

In the listview are names of patchers which will be loaded at the
startup.
’Load’ loads new patcher(s) in startup list.
’Remove’ removes selected patcher.
’Save Startup List’ saves startup list in s:PatcherList.
’Exit’ closes window.
Size: - size of selected patcher.
Patches: - number of patched resources(libraries) and functions.
Path: - full path to selected patcher.
Dropped icon picture won’t appear. :) It’s disabled for now.

Ultimate 5 / 17

LIBRARIES OVERVIEW

With big cycle gadget you select which library functions you want to see.
In listview all of function offsets are listed, so you can see theirs
status.
Old: - Original address of selected function.
New: - New address of selected function.
Purpose: - Very short description of patched function.
Patcher: - Name of patcher.

1.7 Given Patchers...

Following patchers are included in this distribution:

-
DPatch
-

Palette
-

AllocMem
-

unfinished patchers

1.8 DPatch

DPatch is originally made by Goran Paulin. This version is the same as
his one, but it works as an Ultimate Patch System’s patcher. For more
info, look in original DPatch’s documentation.

1.9 Palette Patcher

This isn’t a real patcher at all. It shows how can you make simple
hotkey program with Ultimate Patch System. When it is started, press on
hotkey (lcontrol shift p) or prefs button calls Palette Requester from
reqtools.library, for activated screen. If curently setted hotkey isn’t
good for you, feel free to change it in source, and then assemble the
source again.

1.10 AllocMem Patcher

This is another simple patch. :) It changes allocating memory a bit, so
memory fragmentation is reduced. It alocates half of 1024 or less bytes
memory blocks in upper memory, and half of them in lower.

Ultimate 6 / 17

1.11 Unfinished Patchers

I planned to finish these two unfinished patches, but I simply didn’t
have time to finish it(but, in another UPS release, they _will_ be
finished).

First one is SetFunction patcher. It replaces SetFunction() with UPS
like one. It is almost finished, but it has bug in removing functions,
and in patching few functions(from exec.library). I don’t know why. In
source, you can see example how can you wait till Remove button is
clicked.

Second one is Icon patcher. When you install MagicWB, colors from 4 to 7
are allocated, so icons are drawn normally. But, these colors also
exists on last four colors, so that means those four colors are
practically wasted. My idea is to make patcher which remaps icons while
they are loading. I did everything except pure icon remap. Try to
finish it, if you have time. :) And, I think that old icons from ram:
won’t be deleted. It’s very simple to do that option - just check from
Close() if it is called from Workbench, and if it is matched with
tempicon pattern. If both of if’s are true, delete file after closing.

1.12 Problems

I think that all problems which may occure are described in Ultimate
Patch System. If you don’t understand something, just contact me.

1.13 Developer Informations

First, I’ll explain few terms which you have to understand.

Patcher is one main structure which contains pointers to all other
structures. For example, if you make patcher which replaces all
functions of graphics.library, patcher should be called ’Graphics.library
patcher’, or similiar.

Patch is structure which is single function patch. In upper example,
there is quite a lot patches.

Patchlink is also structure which contains pointers to patches, but it
points to only similiar patches, which patch same area of library, or
similiar functions. For example, patchlink which contains patches for
functions for drawing lines, could be called ’Line Patches’.

Patchers could be made in two ways. First way is to assemble program
which has patcher structure at the beggining(assemble it as a normal
program, with hunks and reloc tables), which user loads directly in UPS.
Second way is to find UPS port, and then send messages to it.

If you don’t know how to code something, just contact me.

Ultimate 7 / 17

/**
*** Patcher file structure

**/

struct pfs {
LONG pfs_code[8]; /// 32 bytes of code

First 32 bytes of free code. In most cases should be RTS and 30 bytes of
anything.

LONG pfs_ControlLong; /// must be equal to ControlLong

Control mark.

struct pfs *pfs_Next; /// pointer to next patcher
struct pfs *pfs_Prev; /// pointer to prev patcher

For internal usage.

struct PVS pfs_NeedVersion; /// minimum version of UPS to start
struct PVS pfs_UsedVersion; /// version of UPS which was used

/// while patcher was developed
APTR pfs_PatcherName; /// pointer to name of patcher

For now, user cannot see that PatcherName.

struct PVS pfs_Version; /// version

Version of patcher itself.

APTR pfs_CoderName; /// pointer to name of programmer
APTR pfs_VersionString; /// pointer to $VER: string

Both strings are optional.

APTR pfs_PatcherIDString; /// listview entry

Text which will be listed in listview of patches.

LONG pfs_Flags; /// flags
LONG pfs_Status; /// status of flags

Flags and it’s status. Don’t change both of them. Flags are explained
later, and 0 in Status field.

APTR pfs_ExecBase; /// exec base
APTR pfs_IntBase; /// intuition base
APTR pfs_GadTBase; /// gadtools base
APTR pfs_DosBase; /// dos base
APTR pfs_GfxBase; /// graphics base
APTR pfs_CxBase; /// commodities base
APTR pfs_LayBase; /// layers base
APTR pfs_UPSBase; /// UPS lib base

Library bases, so you don’t have to open them. UPS lib is reserved for
future usage.

Ultimate 8 / 17

APTR pfs_Init; /// pointer to init routine
APTR pfs_Exit; /// pointer to exit routine

Pointers to init/exit routines, which will be executed after
opening/closing resources. On the end of Init routine, in D0 should be
placed 0 of anything went wrong.

APTR pfs_Prefs; /// pointer to prefs routine
APTR pfs_PrefsKey; /// pointer to cx keys to call

/// prefs rout

Should be NULL if prefs flag isn’t set.

struct orl *pfs_ListPtr; /// pointer to struct of requested
/// opened resources

Pointer to Resource structure.

struct mps *pfs_Patch; /// pointer to struct for patches

Pointer to first Patch.

struct pls *pfs_pls; /// pointer to pls structure

Pointer to first PatchLink.

APTR pfs_UPSMsgPort; /// pointer to main UPS msg port
APTR pfs_UPSRexxPort; /// pointer to rexx port

For internal usage.

struct pxs *pfs_pxs; /// pointer to pxs structure

Pointer to PatcherExtended structure.

BOOL *pfs_fakesemaphore; /// TRUE for UPS’s setfunction

For internal usage.

LONG pfs_User1; ///
LONG pfs_User2; ///

Here can be placed any user data.

LONG pfs_ControlLong2; /// ControlLong

Control mark

struct pfs *pfs_PFS; /// pointer to the beginning of struct

Pointer to the beginning of Patcher structure.

};

Ultimate 9 / 17

/**
*** Version strcuture

**/

struct PVS {
WORD PVS_Version; /// version word

Version word.

BYTE PVS_Revision; /// revision byte
BYTE PVS_User1; ///

};

#define pfsControlLong 0x17061995
#define UPSMainVersion 39

First UPS Server version.

#define UPSMainRevision 0

#define pfsDisableable 0x00000001 /// Enable/disable patcher option
#define pfsPrefs 0x00000002 /// Prefs editor exists
#define pfsNoRemoveable 0x00000004 /// Disable Removing of Patcher

/**
*** Patcher Extended Structure

**/

struct pxs {
LONG pxs_CxID; /// Commodity hotkey id
APTR pxs_CxObjs; /// Commodity object pointer

};

/**
*** Open Resource List

**/

struct orl {
struct orl *orl_Next; /// pointer to next entry
struct orl *orl_Prev; /// pointer to previous entry

Part of standard node structure. Always set it right!

LONG orl_Type; /// type of resource

Type of resource to open. Only library, for now.

LONG orl_ID; /// resource id

ID of this resource. All ID’s should be different!

LONG orl_Flags; /// flags

Ultimate 10 / 17

APTR orl_Name; /// pointer to name of resource
APTR orl_Base; /// base of opened resource

Here is placed base of opened resource.

LONG orl_Version; /// version, if needed

If 0, OldOpenLibrary will be called.

LONG orl_DataRegs[8]; /// ...to put in data regs
APTR orl_Open; /// user open rout for user type
APTR orl_Close; /// user close rout for user type
APTR orl_UTName; /// pointer to name for user type
LONG orl_User1; ///
LONG orl_User2; ///

Not yet used.

};

#define orlNoNecessary 0x00000001 /// dont care if not opened

No matter if resource isn’t really opened.

#define rt_Library 1 /// resource type is library

/**
*** Main patch struct

**/

struct mps {
struct mps *mps_Next; /// pointer to next patch
struct mps *mps_Prev; /// pointer to prev patch

Part of standard node structure. Always set it right!

LONG mps_Pri; /// priority, less runs first

Priority of Patch. It should be beetween -32768 and 32766. 32767 is
original function call, so don’t use it. Higher priorities runs later.

struct pfs *mps_Patcher; /// pointer to parent Patcher
APTR mps_PatchIDString; /// listview entry

Pointer to string which will be displayed in future listview gadget.

APTR mps_PurposeString; /// pointer to purpose string

Pointer to short description string.

LONG mps_ID; /// id of resource to be patched
LONG mps_Flags; /// flags
LONG mps_Status; /// status of flags
LONG mps_Offset; /// offset to change

Ultimate 11 / 17

Put here offset which will be patched.

APTR mps_New; /// pointer to new routine

Pointer to routine which will be patched.

APTR mps_Old; /// pointer to old routine

Pointer to old routine. If you want to call orginal function inside of
patch of the same function, do something like this:

lea patch,a0
move.l #aa,-(a7)
move.l mps_pls(a0),a0
move.l pns_Next(a0),-(a7)
rts

aa

struct pns *mps_pns; /// pointer to pns structure
APTR mps_NotifyDisable; /// notified when enabled/disabled

Routine which will be executed when patcher is disabled or enabled. In D0
is 0 if enabled.

APTR mps_Install; /// install rout for user type
APTR mps_Remove; /// uninstall rout for user type

For future usage.

APTR mps_Init; /// pointer to init routine
APTR mps_Exit; /// pointer to exit routine
struct pls *mps_pls; /// pointer to pls structure
LONG mps_User1; ///
LONG mps_User2; ///
LONG mps_User3; ///
LONG mps_User4; ///

};

#define mpsDisableable 0x00000001 /// Enable disable patch option
#define mpsFullPatch 0x00000002 /// if full, don’t call orig. patch

If FullPatch option is selected then this patch is the last patch on
patched function which will be executed.

#define mpsDisTemp 0x00000004 /// While removed, previous status

Ignore this.

/**
*** Patch node struct

**/

This function is made by UPS.

Ultimate 12 / 17

struct pns {
WORD pns_Jsr; /// jsr ($4eb9)
APTR pns_New; /// newrout

Here is your new routine.

WORD pns_Jmp; /// jmp ($4ef9)
struct pns *pns_Next; /// nextrout

And, jump to next pns structure...

struct pns *pns_Prev; /// pointer to prev node
LONG pns_Pri; /// pri, less first
APTR pns_Orig; /// orginal routine
struct mps *pns_Patch; /// pointer to main patch
struct pfs *pns_Patcher; /// pointer to patcher
LONG pns_Mark; /// $fc263815
struct pns *pns_pns; /// pointer to this structure
LONG pns_User1; ///
LONG pns_User2; ///

You can always use upper informations...

};

/**
*** UPS message

**/

This is what you send to UPS’ message port!

struct um {
struct Message

um_Message;
LONG um_Command; /// command to execute
LONG um_A0; /// adress register 0
LONG um_A1; /// adress register 1
LONG um_A2; /// adress register 2
LONG um_A3; /// adress register 3
LONG um_D0; /// data register 0
LONG um_D1; /// data register 1
LONG um_D2; /// data register 2
LONG um_D3; /// data register 3

};

Commands:

#define umAllocUPS 0x00000001
Allocate UPS, in a0 ptr to application name

#define umFreeUPS 0x00000002
Free UPS, in a0 ptr to application name

#define umLoadPatcher 0x00000010
Initiate LoadPatcher routine

#define umAddPatcher 0x00000015
Load Patcher, in a0 ptr to filename, in d0 error code

Ultimate 13 / 17

#define umInstall 0x00000030
Install Patcher, in a0 ptr to patcher, in d0 error code

#define umRemove 0x00000031
Remove Patcher, in a0 ptr to patcher

#define umOpenResource 0x00000050
Open Resource, in a0 ptr to resource, in d0 return BOOL.

#define umCloseResource 0x00000051
Close Resource, in a0 ptr to resource

#define umInstallPatch 0x00000040
Install Patch, in a0 ptr to patch, in d0 error code

#define umRemovePatch 0x00000041
Remove Patch, in a0 ptr to patch

#define umEnablePatcher 0x00000035
Enable patcher in a0

#define umDisablePatcher 0x00000036
Disable patcher in a0

#define umEnablePLink 0x00000037
Enadle patch link in a0

#define umDisablePLink 0x00000038
Disable patch link in a0

#define umOpenMain 0x00000060
Open Main Window

#define umCloseMain 0x0000006f
Close Main Window

#define umOpenPM 0x00000061
Open Patcher Manager Window

#define umClosePM 0x0000006e
Close Patcher Manager Window

#define umOpenLO 0x00000062
Open Library Overview Window

#define umCloseLO 0x0000006d
Close Library Overview Window

#define umSpitRequester 0x00000070
Spit requester, with text in a0

#define umPrint 0x00000073
Print text line in a0

#define umPrefsPatcher 0x00000078
Call prefs from Patcher in a0

#define umPrefsPatchL 0x0000007a
Call prefs from PatchList in a0

#define umGetLibBase 0x00000008
Get base ptr from code in d0, result in a0

#define umGetPList 0x0000000a
Get PatcherListStructure ptr in a0, and PList itself in d0/d1/d2

#define umMakeEasyPatcher 0x0000001c
Make easy patcher with tagarray in a0. Pointer in a0, or null for error

#define umFreeEasyPatcher 0x0000001d
Remove easy patcher in a0.

#define umMakeEasyPatch 0x0000001e
Add Patch to easy patcher. Pointer to tagarray in a0, and parent patcher
in a1. Pointer to patch in a0, null for error.

#define umFreeEasyPatch 0x0000001f
Remove east patch in a0.

#define umNoFree 0x80000000
Don’t free memory after processing. Just add this to command codes.

#define umLibExec 0x00000001

Ultimate 14 / 17

#define umLibDOS 0x00000002
#define umLibIntuition 0x00000003
#define umLibGadTools 0x00000004
#define umLibUtility 0x00000005
#define umLibCommodities 0x0000006
#define umLibIcon 0x00000007
#define umLibReqTools 0x00000008
#define umLibLayers 0x00000009
#define umLibGraphics 0x0000000a
#define umLibWorkbench 0x0000000b

These are tags for easy patcher/patch arrays.
In easy patcher, this tags have to be set:
umTagPatcherName, umTagPatcherIDString, umTagResourceName,
umTagPatchIDString, umTagPatchOffset, umTagPatch.
In easy patch, this tags have to be set:
umTagResourceName, umTagPatchIDString, umTagPatchOffset, umTagPatch.

#define umTagNeedVer 0x80000001
#define umTagPatcherName 0x80000002
#define umTagCoderName 0x80000003
#define umTagPatcherIDString 0x80000004
#define umTagPatcherDisableable 0x80000005
#define umTagPatcherPrefs 0x80000006
#define umTagPatcherNoRemove 0x8000001b
#define umTagNeedVersion 0x80000007
#define umTagVersion 0x80000008
#define umTagInit 0x80000009
#define umTagExit 0x8000000a
#define umTagPrefs 0x8000000b
#define umTagPrefsKey 0x8000000c
#define umTagResourceType 0x8000000d
#define umTagResourceName 0x8000000e
#define umTagResourceVersion 0x8000000f
#define umTagResourceID 0x80000010
#define umTagPatchPri 0x80000011
#define umTagPatchPurposeString 0x80000012
#define umTagPatchIDString 0x80000013
#define umTagPatchOffset 0x80000014
#define umTagPatchDisableable 0x80000015
#define umTagPatchFullPatch 0x80000016
#define umTagPatch 0x80000017
#define umTagPatchNotifyDisable 0x80000018
#define umTagPatchInit 0x80000019
#define umTagPatchExit 0x8000001a /// 1b is last

/**
*** Patchers list

**/

This is for internal usage.

struct psl {
struct MinNode

node; /// simple node structure

Ultimate 15 / 17

BPTR psl_Segment; /// BPTR to patcher segment
struct pfs *psl_Patcher; /// pointer to patcher structure

};

/**
*** Patch link structure

**/

struct pls {
struct pls *pls_Next; /// pointer to next link
struct pls *pls_Prev; /// pointer to prev link

This is part of standard node structure. Always fill it right!

APTR pls_LinkIDString; /// listview string

Pointer to text which is put in patchlink listview gadget.

APTR pls_Prefs; /// pointer to prefs routine
LONG pls_Flags; /// flags
LONG pls_Status; /// status
struct mps *pls_List[1000]; /// patches

Put here pointer to patchers in this patchlink. 0 on the end of list.

}

#define plsPrefs 0x00000001

Put if prefs exists.

#define plsDisableable 0x00000002

Put if PatchLink can be disabled.

#define plsDisTemp 0x00000004 /// While removed, previous status

Ignore this.

1.14 ToDo list

- improve Ultimate Patch System’s structures
- add more UPS datatypes like devices, trap vectors...
- improve GUI, and add no-topaz 8 support
- improve listview in Libraries Overview window
- add .icon viewer in Patchers Manager window
- include more patchers in main package
- remove enforcer read hits(read, not write!)

1.15 Distribution rules

Ultimate 16 / 17

Ultimate Patch System is freely distributable. No charge may be made for
Ultimate Patch System, other than a nominal copy fee. Ultimate Patch
System may not be distributed with a COMMERCIAL or SHAREWARE product
without the authors prior consent. Ultimate Patch System must be
distributed with all documentation, developers stuff and other files
intact and unaltered. Permission is expressly granted to Fred Fish to
distribute on his fine collection of disks.

For common user, Ultimate Patch System is totaly free. But, _any_
donations will be gladly accepted(money, self-made stuff, postcards...).

For user who want earn money(in any way) on patchers, have to pay
symbolic fee to me. Fee is £5, 10USD or 15Dem.

If user or company wants to include Ultimate Patch System in his
production, you should contact me first.

1.16 Ultimate Patch System’s history

This is first version of Ultimate Patch, so program history isn’t
available yet. In fact, there were over fifty versions made, but they
were only internally used.

1.17 Credits And Stuff

Ultimate Patch System is written in C, and compiled with SAS/C 6.5,
except few routines written in assembler, compiled with PhxAss by Frank
Wille.

Graphics User Interface was created using the excellent GadToolsBox
v2.0b, from Jaba Development.

Ultimate Patch System uses reqtools.library, which is Copyright Nico
François.

Ultimate Patch System has been written in GoldEd by Dietmar Eilert.

Thanks also go to people from Amiga.hr, fidonet conference, which helped
me with many answers to my questions. Especially, thanks go to Goran
Paulin and Miljenko Vrankovic, because of Enforcer testing.

Also, greets to Alien Dezign(especially Michael Knoke) for making MCP.

1.18 Contacting the author

Goran Mitrovic, author of Ultimate Patch System:

- snail mail :
Goran Mitrovic

Ultimate 17 / 17

Trg kralja Tomislava 5
48000 Koprivnica
Croatia
Europe

- internet :
goran.mitrovic@tvri.fido.hr
gmit@public.srce.hr (for files)

- fidonet :
Goran Mitrovic@2:381/106

Goran Paulin, author of DPatch:

- snail mail:
Goran Paulin
Rade Supica 1
51000 Rijeka
Croatia
Europe

- internet :
Goran.Paulin@tvri.fido.hr
gpaulin@oliver.efri.hr

- fidonet :
Goran Paulin@2:381/106

	Ultimate
	Ultimate Patch System Manual
	Copyright information
	Introduction
	Requirements
	Starting Ultimate Patch System
	Using Ultimate Patch System
	Given Patchers...
	DPatch
	Palette Patcher
	AllocMem Patcher
	Unfinished Patchers
	Problems
	Developer Informations
	ToDo list
	Distribution rules
	Ultimate Patch System's history
	Credits And Stuff
	Contacting the author

